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Critical behavior of vorticity in two-dimensional turbulence
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We point out some similarities between the statistics of high Reynolds number turbulence and critical
phenomena. An analogy is developed for two-dimensional decaying flows, in particular by studying the scaling
properties of the two-point vorticity correlation function within a simple phenomenological framework. The
inverse of the Reynolds number is the analog of the small parameter that separates the system from criticality.
It is possible to introduce a set of three critical exponents; for the correlation length, the autocorrelation
function, and the so-called susceptibility, respectively. The exponents corresponding to the well-known enstro-
phy cascade theory of Kraichnan and Batchelor are, remarkably, the same as the Gaussian approximation
exponents for spin models. The limitations of the analogy, in particular the lack of universal scaling functions,
are also discussefiS1063-651X99)12312-4

PACS numbg(s): 47.27.Jv, 05.40-a, 05.70.Jk

[. INTRODUCTION range velocity correlations. Physically, a flow can be struc-
tured even if the vorticity vanishes nearly everywhere, as in
Turbulence is characterized in a generic way by selfthe case of an assembly of point vortices in two dimensions.
similar spectra, a feature that is also found in other physicaHence, the study of vorticity distribution functions should
situations, such as critical phenomena or random walks. Imeveal a deeper, less intuitive degree of order in flows. This
real space, this property is usually the signature of well-occurs in two-dimensional turbulence, where the vorticity
known statistical mechanisms such as the inverse power latends to concentrate in spatially extended structures, of par-
decay of two-point correlation functions and the non-ticlelike character. Indeed, numerical studies of two-
Gaussian behavior of the relative dispersion of random varidimensional decaying turbulence have shown that the long
ables of the problem. Some attempts have been made to réme dynamics is dominated by a few large coherent axisym-
late scaling in turbulence with critical phenomena and fieldmetric vortices that contain most of the enstrofby. Dy-
theorieq 1]. More recently, experiments have shown that thenamically, it is commonly believed that these structures are
power consumption in closed turbulent flows and the totakhe result of many vortex mergers. Such flows can often be
magnetization of spin systems at criticality have similar, andvell described by a modified Hamiltonian, deterministic
to some extent, universal, probability distribution functionsmodel of point vortice$6]. These rather well isolated struc-
[2]. The two-point velocity correlation function has been atures of well defined shape and size have the advantage of
guantity extensively studied in hydrodynamic turbulence,simplifying the picture of the flow, because the organization
mostly under the related form of velocity incremef@3. In of initially numerous incoherent vortices into blobs reduces
practice, a real space experimental and numerical analysis tfie number of relevant degrees of freedom.
eventual scaling laws is a difficult, space and time consum- In this study, following a route similar to the analysis by
ing task, because the asymptotic regimes are reached veBabianoet al.[7] of velocity structure functions, we charac-
slowly as the Reynolds number goes to infinity. On the otheterize the vorticity structure in real space for two-
hand, relatively few studies have been devoted to the chadimensional homogeneous unforced turbulence, keeping in
acterization of the spatial structure of the vorticitsV mind its possible representation in terms of assemblies of
X u). Although, in Fourier space, the enstrophy spectrum ofvortices. We consider the normalized vorticity autocorrela-
an incompressible flow is very simply related to the kinetiction function, and calculate it assuming a phenomenological
energy spectrum, the vortex statistics and correlations in realelf-similar energy spectrum in the inertial rande(q)
space are not so simply related to their velocity counterparts;-q~#. In experiments or numerical studieg, is usually
but have distinct properties. This difference is illustrated in afound to be around B8], the value predicted by the Kraich-
spectacular way in two-dimensional turbulence, where th@an [9] and Batchelof10] reference theory, hereafter re-
enstrophy{ w?(x)) cascades toward small scales while theferred to as KB, or steepeju=4).
kinetic energy(u?(x)) follows an inverse cascade to large  In the next section, we show that the vorticity autocorre-
scales. This is essentially due to the absence of vortebation function exhibits distinct behaviors depending on the
stretching in two dimensions. Because of this property, thevalue of the exponeni. In Sec. Ill, we show that it is
enstrophy obeys a conservation equation, @a®(x)) is dis-  possible to draw an analogy between two-dimensional turbu-
sipated even in the very low viscosity limit, contrary to the lence and systems of spins near criticality for valuesuof
energy[3,4]. larger than 1. The correlations can indeed be written under
A vortex is one of the simplest kinds of structure gener-the form of a scaling law involving a diverging correlation
ated by hydrodynamic instabilities; an isolated structure idength when the Reynolds number goes to infinity. The criti-
likely to produce slowly decaying flow fields in spagpi-  cal exponents that correspond to KB theory precisely coin-
cally with 1k, 142 dependendeand consequently long cide with the Gaussian exponents of spin models or random
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walks. Conclusions including a brief discussion of the three- da R da I -1
dimensional case are presented in Sec. IV. Rw(f)=(jq dqq )Jo(qr))(jq dgq )) .
| |
(2.9
II. VORTICITY POWER SPECTRA
. - . . where
Let us consider the vorticity autocorrelation function
=2/,
o (ry 00 0 ) o1 !
N=——————, .

@ (@?(X)) g,=2m/a. (2.9
that has been normalized to one at0. R,, can be expressed Note that the normalized velocity autocorrelation function
as a function of the Fourier transform of the vorticity Ru(r), has the same expression as Eng), replacingu by

(u+2). It can be seen that both the numerator and the de-
igx nominator of Eq(2.8) diverges when—o if ©=3. Hence,

""(q):f dxe(x)e" ", (2.2)  \ve expect the behavior @&,,(r) for x> 3 to differ from its

behavior foru<3, while the analytical form oR, does not
through the relation undergo an abrupt change at this point. In the following we
discuss the different cases encountered.
J da(e(q)- w(—q))e'?”
R,(r)= 2.3 A. Casep>3
qu(w(q)-w(—q)) To study the correlations in the intervaa, we can
replace the upper limits of the integrals of E.8) by in-

finity. Thus,R,(r) scales as a function afl only, and can

The vorticity power spectrunie(q) - @(—q)) can easily be be rewritten as

related to the kinetic energy spectruifq) of the flowu. In
two dimensions one gets, in the homogeneous isotropic case

Ry(N)=1—(u—3)qf :dqq*w*Z)[l—Jo(qr)],
|

E(a)= 7 (U@ u(-q)), 24 ) 210

a<sr. .

whereV is the volume of the flow. If the flow is incompress- | 3<u<5, the integral of Eq(2.10 is finite asqg, goes to
. - . _ 2 1 .

ible, one has the identity(w(q)-e(—a))=q*(u(a)-U  zero. After the variable change=qr, one obtains the first
(—0)), so that order expansion im/l,

(o(q)- o(—q))=47VqE(Q). (2.9 F[(S_M)/Z](mys
R,=1—- |+ ,  a<r<l;3<u<s,
Replacing the identity2.5) in expression(2.3) and integrat- Il(p=D/2]\ |
ing over the angular variable gives (213
wherel” denotes the Gamma function. Ik5u<7, we use
J' dqoPE(q)Jg(qr) the second order expansion of the Bessel funclig{ix) =1
R.(1)= , 2.6 —x§/4ﬂL o(x%, anzd replace in E¢2.10 [1—Jo(x)] by [1
f dqe?E(q) —X“/4—Jo(X) ]+ x“/4. We obtain
_ M_B 2 n—3
whereJ, is the Bessel function of the first kind. In the fol- Ru(r=1~ 4(u—5) @r)=Culan® = S<p<7,
lowing, one assumes that the energy spectrum is self similar (2.12

in the inertial range, which extends between an integral scale
| at which energy is(initially) injected and an enstrophy With
dissipation scale:

-3 [ a2 x2ia—

The spectrum is supposed to vanish at length scales smallghe leading behavior dR,(r) is given by ther? term. It is
thana. If the observation scaleis much smaller thah one  easy to show that this property stays valid for af-5:

can assume in addition th&{q) =0 for q<2=/l. (We dis- 3

cuss in Sec. IV the modifications introduced by considering M

the part of the spectrum that extends beyond the inertial Rw(r)21—4(M_5)(q|r)2, a<r<|. (214
range) Note that in the general case, the sdaland hence

the integral Reynolds number, may increase with time, as ifhe results displayed in Eq&.11) and(2.14 are the ana-
freely decaying processé4]. This is not a restriction to our logues of those obtained by Babiaabal.[7] for the veloc-
analysis, which deals with instantaneous spectra. Relatioity structure functiongin the cases £ ©<3 andu >3, re-
(2.6) simply turns into spectively. The power-law exponent of the corrections for
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3—p 1 qar?
2 L 1 4 1

small separation distances does not depeng.dar p>5.

The first order expansion®.11) and (2.14 show that the R,(r)=1F;
characteristic length ruling the decayRj, is q,‘l. We con-

Clude that the V0rtiCi'[y Correlation |ength iS Of Order Of the WherelFl is a hypergeometric function_ qu‘ar>1, and |f
integral scald. w#1, R, behaves afl1]

(2.20

r| ~ (@)

a

B. Case 3/2u<3
R,(r)=

For energy spectra less steep thaR, the denominator of I(e=1)2]
expression(2.8) is well defined ad goes to infinity, but
diverges whenma goes to zero. In turn, if 3R u<3, the
numerator of Eq(2.8) does not necessitate infrared nor ul-
traviolet cutoffs to be finite, provided that-0. This implies
that in the limit wherel/a is large, R,(r) can be much
smaller than one even if<lI.

If a<r<l, one can sef;=0 andg,= in the numerator
of Eqg. (2.8). Using properties of Bessel functioh$l], one
obtains

(2.29

If u>1, the above expression is positive and does not differ
from the behavior displayed by E@2.15. In turn, if u
=1, the prefactor of the algebraic dependence in(E®J)
vanishes and relatio(2.20 simply reduces to a short range
function

R,(r)=e (m1/a)? (2.22

The energy spectrum=1 is known to correspond to a flow
-(3-w) composed by statistically independent point vortice4. In
(2.15  that limit, it is easy to show that the vorticity correlations
reduce to

T[(5—p)/2]
Rl == Dyiz]

ar
a

The correlation function decays algebraically with the dis- 1 if r=0
tancer. The valueu=3 separates two different scaling re- R,(N|—1= . ’
gimes ofR, . At the transition, the numerator of E¢R.8) 0 if r>0.

behaves as Ihg), and making the variable change=qga,
I'[(w—1)/2]"is nownegative This case is physically very

one obtains after a simple calculation:
Ry (N)=1- —— szd 11— 3| X
oD =100y ), X o\ Xa
(2.16 different from the situatiopu>1, whereR(r) is always a
. . . .__positive, slowly decaying function. Indeed, far<1, R, (r
When the separation distance is much larger than the dis Jecreases for)émaﬂla%/d %as its first zero f0'r~ﬂa' this is(th)e
pation scale, the correlations decay logarithmically )

signature of a short range function, such as R2. We

(2.23

Replacinga by zero in Eq(2.22), we recover the distribution
given by Eq.(2.23.

If w<1, vortex correlations for large separation distances
. u=3. r are still given by relation(2.21). However, the prefactor

In(1/r)— In 7—0.577 conclude thaR,, is short range and characterized by a cor-
R,(r)= in(i/a) —, a<r<l;u=3. relation length of ordea in the rangeu<1.
n(l/a
(217 Ill. DISCUSSION
C. Casep<3/2 The results derived in the preceding section show that the

two-point vorticity autocorrelation function can be recast un-

For values ofu lower than 3/2, both the denominator and der scaling forms, such as

the numerator of Eq(2.8) diverge whena goes to zero. In
order to avoid convergence problems due to oscillations

when integrating the Bessel functidg over a large but fi- R,(r)=
nite interval, it is now necessary to replace the discontinuous

energy spectruni2.7) by a continuous spectrum that models
better the effects of viscous dissipatid®], for instance,

-n

f(rlé). (3.0

a
The above relation defines an exponenand a correlation
length ¢. Pair correlations in systems near a critical point

g i g satisfy similar scaling laws, where the scaling functiate-
E(q)~ a e 1 a9=ar (2.18 cays, say, exponentially, argldiverges as the temperature
0 if g<q. approaches the critical temperature. In the present context,

the vorticity has various spatial structures depending on the
In Eq.(2.18), the dissipative spectrum at large wave numbersslope of the energy spectrum. The correlation lengtrs
0>0, is described by a Gaussian functipt3]. Settingg,  small and equals the dissipation lengttvhenu <1, see Eq.
=0, relation(2.6) yields (2.22). The caseu>1 is more interesting because, then, the
correlation length is large¢{=I1>a, see Egs.(2.11) and
_ (3 R P (2.14. [In the range ¥ u<3, if the separation distanceis
Ru(1)= I'i(3—w)/2] %' M)fo dae” ¥ g™ “Jo(qr), no longer small compared with it is easy to check that
(2.19 expression2.15 or (2.2 reduces to the forn(3.1) with &
=I.] These two distinct regimes are indeed driven by the
that can be recast as behavior of the numerator of E@2.8) with respect to the
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R (r) ~ r" i(r/¥) simple scaling form described with a few relevant parameters
in a particular asymptotic limif16]. This can be done, for
instance, in the context of random walks, where the analog
of the spin-spin correlation is the probability of presefae

defined as Revl/vy, wherev is the rms of the velocity and

v, the kinematic viscosity. The ratid /@)Y, whered is the

1 3 ! space dimension, is often seen as the number of degrees of
freedom of the flow[4]. Phenomenological theories involv-

FIG. 1. Scaling forms of the vorticity autocorrelation function in ing dimensional argumen{9,10] usually lead to power law
the space of the parameter If the slope of the energy spectrum is phehaviors ofl/a with Re, say

lower than 1,R,, is a short range function. In turn, whes>1, the
correlation length is of order of the integral scleNote that for |~aRe". (3.2
>3, the critical exponeny is identically zero.

gas or liquid of long range order the end-to-end distance distributjpand the analogue of the
small vortices | temperature difference from the critical temperature is the
£~ : £~ inverse of the timdor length of the walk[17,18.
E~a ! In turbulence, the integral Reynolds number of a flow is
n=3—p | 7n=0
|
1

. . _ _ Sincel is the correlation length in the regign>1 (see Fig.
ultraviolet cutoff. When this cutoff is necessary in order to 1), » can be understood as a correlation critical exponent.

get a finite integral, the correlations are short range; othelpgeeqd, as the Reynolds number goes to infinity, the correla-
wise, they are long range. This abrupt change is reminiscenf,, lengthé=1 diverges in units of, and the small param-

of a similar feature encountered in problems of elastic interyor that separates the system from criticality is the inverse of
faces at thermal equilibrium, namely, the transition from flat

; . the Reynolds number.
to rough surfaces as the surface dimension decreases acros

SThe correlation function exponent of the scaling form
the valued=2 [15]. In that problem, the rms of the height % ponent 9

.1) defines a second critical exponeni=3—u in the
nge K u<3, and =0 for u>3. The transition g
=3) where correlations no longer decay algebraically at in-
finite Reynolds number coincides with the spectrum of the
KB theory. At this particular pointR, decays logarithmi-

difference between two well-separated points can be seen
a correlation length. In high dimensiofianalogous here to

low values ofu), this difference is constant, of order of a
small cutoff scale identified with the thickness of the inter-

fage (he_re, the d_isEipation sca_JeI,-,pwever, ifd<2, the cally as shown by Eq2.17). Table | shows the main con-
height d|ﬁerence IS “macroscopic:” It depends on the size Ofnections with critical phenomena, for instance, with a system
thg system, i.e., the separation distance between the twey Ising’s spins at temperature slightly aboVg. However,
points. . _ . . . the correspondences are purely statistical: considering few
The main scaling pro_pertles are summarlzeq on the dl"J‘E)ody problems, it is obvious that vortex interaction and dy-
gram of Fig. 1. Flows with short range correlations can bqﬁamics[19] cannot be compared with spin interaction. Con-

p'Cttl.”ed for_tlr]nstac?_ce fas ‘396{5} ct)rr1 I|qU|d,”of :le?]rly p?'n.tl':feceming this last point, the comparison with spin systems is
vortices, with radii of order of the smallest characteristic | \-n more precise in the case of a superf(@a.

scale, the dissipation scak Using the Ianguagg of spin Different theories of turbulence will in general lead to
models, these structures are also analogous to high tempelgtarent values of the exponentsand 7. In phenomeno-
ture states, whera would correspond to the lattice spacing. o )

. ; gical theories, conservation laws and other arguments
The pa'lrt' of the Fhagram vvhe;ze is larger than 1 correspo'nds (such as dimensional argumentetermine the exponent of
to vorticity distributions with long range spatial correlations.

In the followi ¢ thi . d devel the energy spectrum, as well as prefactors depending on dis-
n the foflowing, we Tocus on this region and deveiop ansipation rates. Since the size of the inertial range must be
analogy with critical phenomena.

consistent with the dissipation rates, once the shape of the
spectrum is known and the energy injection scale is fixed, the
dissipation scala [and consequently the value of the expo-

An analogy between a physical problem and critical phenentv in relation(3.2)] is unique. Hence, the critical expo-
nomena requires that some of its statistical properties take ents» and v are generally not independent.

A. Critical exponents

TABLE |. Two-dimensional turbulence and critical phenomena compared.

2D turbulence Critical phenomena

R, (1) ={®(x)- o(x+r))/{w?(X)) Spin correlationg S(x) S(x+r))
1/Re(=0) t=|T—T,/T, (—0)

R, (r)~(r/a)~7f(r/l) (S(X)S(x+1))~r279=7f(r/&)
Dissipation scale Lattice spacinga
Integral lengthl~a(1/Re) " Correlation lengthe~t™"
=AY ([ pdxe(x))2/{w?)~a%(1/Re) ¥ Susceptibility:y=((Z;5)2) ~t 7
Exponents relationy= v(2— %) y=v(2—17)

Kraichnan and Batchelor theories=0, v=1/2 Gaussian resulty=0, v=1/2
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The KB approach to two-dimensional turbulence assumes r<l;u>3.
that the enstrophy flux through wave numiggis indepen-
dent ofq at largeq; a dimensional argument leads go=3 Hence, the differences introduced by the modified spectrum
and (/a)?~Re[4]. The critical exponents associated to thein the scaling functionf(u), defined by Eq.(3.1), already
KB theory are hencey=0 andv=1/2. These exponents are, appear at the first order expansionuinthe prefactor is also
remarkably, the same as the exponents of the Gaussian ag@-function of uo. As u grows, the decay of (u) depends
proximation in spin models, or the Brownian motion expo- more strongly on the “nonuniversal” part.
nents(see Ref[18]). Although the meaning of this coinci- However, withE(q) given by Eq.(3.9), the leading be-
dence remains unclear, first, it can be noted that a mean fielhyior off(u) for u>1 is generically exponential. A famous

approximation in the present fluid dynamics context COM€yxample is provided by the Ornstein-Zemik@Z) approxi-

sponds to the fact of neglecting the fluctuations of the enstrog tion for critical phenomena, where the spin-spin correla-

phy dissipation rate during the enstrophy cascade. Secondl}{On function reads(S(0)S(r) ) [ d?k exp(k.r)/(k2+ & 2)

the KB theory is based on two conservation equations: for "~ 1 2 S o
the kinetic energyu?) and for the enstrophyw?). Such a r"exp(r/€) forr>£[22], corresponding in the present

description is incomplete: indeed, in two dimensions the Vor_descrlptlon to"foz _.1 and,u=3.. Recent exper[mental re-
ticity follows the fluid motion in the inviscid limit, hence any Sults on two-dimensional decaying turbulence in soap films
continuous functionalF (w)) is invariant with time, or must ave shown clear evidence of spectra with both power-law
satisfy a conservation equation in the slightly dissipative?d inverse power-law regimes, with respective slopes close
case. Assuming the Gaussian approximatioa2"*)=0 to the valuesug= 1.5_ andu=3 _[8]. A_nalytlcal calculations
and (0?")=(w?" for any integern, the conservation of can be performed in the equipartition cagg=1 and u
(w?) implies the conservation of any functiondl(w) =3: let us rewrite the energy spectrum under the form
=3 ,a,0". Hence, the KB theory ressembles a Gaussian apE(d)~a/(q*+&™*) with £=I. The vorticity correlations
proximation, by focusing only on the second moment of theread

vorticity.

Jo(qr)

q4+§*4'

B. Lack of universality Rw(r)“Jo dgo? (3.5

Although microscopic detailghere the dissipation pro-
cesses aij>q,) disappear in the behavior &,(r) for large  Differing from the OZ result, the asymptotic limit of Eq.
separation distances, the analogy with critical phenomen¢s.5) exhibits oscillationg23]:
presented in this section encounters a limitation when look-
ing more closely at the scaling functidrin Eq. (3.1). In the 1
case of turbulencd,does not rigorously converge in distinct f(u)o —-exp(—u/V2)cogu/\2+ w/8), u>1.
“universality classes,” since it does not depend on the self u 3.6
similar energy spectrum of the inertial range only. The scal- '
ing functionf essentially depends on the shape of the energy we now outline a physical interpretation of the scaling
spectrum at low wave numbers. In general, the integral scalginction f. As mentioned before, some two-dimensional de-
is not the largest scale in turbulent flows and coherent struccaying turbulent flows with a spectrum given by E8.3) are
tures may emerge from external constraints: the wave numgel| pictured by an assembly of well separated vortex blobs
bers lower than /I contain a non-negligible part of the with particlelike character. This has been, for instance, very
energy and this part of the spectrum is driven by “nonuni-clearly observed in some recent numerical simulations on
versal” conditions such as interactions between large eddief,omogeneous Rossby wave turbulefizd]. Let us assume
depending on the system size and boundary conditionghat these vortices are all of sizeand with the same circu-
Hence, only short distance scaling is generic in turbulenceation modulus. The vorticity distribution inside one blob is

as already noted by Eyinét al.[1]. thus described by the short distance behavior of the vorticity
Let us consider the modified spectrum correlation function, see, e.g., E.17). In turn, the long
(et distance behavior oR, accounts for the weak correlations
(ot 1) yug 0<g< ) @ . L
E(q)~ q a, a=ar 33 between different vortices. Following a route similar to the

q“, q<q<d,. one presented in Ref25], it is easy to show from the defi-
nition (2.1) that, if there are the same number of blobs with
In two dimensions, the exponepi,=1 corresponds to an positive and negative circulation so that the flow has no net
equipartition kinetic energy spectrum at low wave numberspyerall rotation
the valueuy=3 has also been proposed for decaying turbu-
lence[21]. It can be easily shown that in the rang€l, Egs. 1
(2.15 and(2.20 remain unchanged with the spectrum given Ru(M*5lai(N)—gu(n],  r=>¢. 3.7
by Eq.(3.3). However, if one wishes to compute the scaling
function, in the casg.>3 for instance, Eq(2.10 turns into  Using the notations employed for ionic liquidg, represents
_1 the pair correlation function between two vortices of same
R (r)=f(£)=1—( 1 +L) qlﬂ—s circulation(“like” ), andg,, the pair correlation function be-
¢ | Mmot3  u—3 tween two vortices with opposite circulati¢tunlike” ). The
" oscillating decaying shape of particle pair correlation func-
x | dgq “=2[1-3y(qr)], (3.4  tions is a generic feature of liquids, in particular, those that
q are ionic[26]. The oscillations oRR,, obtained in a particular
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case through Eq(3.6), although having a very different Hence, the system can be picturedAd$? independent re-
physical origin, qualitatively support the idea that the struc-gions of sizel at criticality. We define the susceptibility per
ture of homogeneous assemblies of coherent vortices can hmit area as
liquidlike.

(0%

C. Susceptibility XTTAT

(3.19

Sin.ce lthe autocorrelation fun_ctioPZw .is an averaged. WhenA is larger than the integral scale squargdyecomes
quantity, it cannot of course provide by itself all the detailsjngependent oA. Taking into account the dissipation scale

on the complexity of vortex structures observed in turbu-j, the calculations, we find from expressi$113 combined
lence, and contained in higher moments. Yet, large coherenfity Egs.(3.2) and(3.12

vortices can be seen as a particular manifestation of long

range order up to the integral scale, similarly to magnetiza- x~a’(1/Re 7, (3.195
tion domains in systems of spins near a critical point. These

vortices produce large fluctuations of vorticity on scaleswith the exponent satisfying the same relation as in critical
smaller than the integral scale, and possibly spatial intermitphenomena:

tency. The fluctuations of the total vorticity contained inside

an observation window of are& are non-Gaussiaftfor y=v(2—1). (3.16
>1) whenA is lower than the square of the integral scale.

To see this. let us define the circulation Relation (3.15 shows that the susceptibility diverges when

compared with the “microscopic” susceptibilita?. Note
1 that contrary to the lattice spacing in spin models, the dissi-
QA:TUZJ dx- e(X). (3.8 pation lengtha may not remain constant while other param-
(0975 A eters of the flow are varied. In any case, ), anda are
independent variables.
The standard deviatiog(Q2) of Q, from its mean value

((Qa)=0) can be estimated by considerifig, as a sum of IV. CONCLUSION
random correlated variables. According to the definitions
(2.1) and(3.9), one gets We have studied the two-point vorticity correlation func-

tion in two-dimensional turbulent flows characterized by a
12 self-similar energy spectrum within an inertial range limited
V(Q/ZQN(AJ dew(f)> : (3.9 by two very different length scales. If the slope is steeper
A than 1, the vorticity distribution presents some similitudes
. . . ._with the magnetization in models of spins near critical point.
WhenR,, is short range, one obtains the Gaussian behavior On the ggrounds of phenomenologpical theories of Eeru-
> 1 lence, the analogy with critical phenomena is made possible
V(Qa)~A m=<1, (3.10 because the ratio between the integral s¢le macroscopic
scale at which energy is injectednd the dissipation scale
at any scale larger than the dissipation scale. In turn, whediverges as a power law of the Reynolds number in the large
the correlation length equals the integral sdalthe scaling Reynolds number limit. The divergence of susceptibility is
exponent is non-Gaussiafie., larger than 1/2) at scales associated here with the increasing fluctuations of the circu-
smaller thanl. With the help of Eqs(3.1) and (3.9, we lation taken around a large contour, as the Reynolds number
indeed find increases. As a surprising result, timnindependeitcriti-
cal exponents corresponding to the Kraichp@hand Batch-
WO ~Ac  (A<I?) (3.11)  elor[10] (KB) theory are the same as those of the Gaussian
approximation result in spin models. A possible connection
with between these two phenomena could be that the KB theory
only considers the first nonvanishing moment of the vorticity
(u+1)/4, 1<u<3, (i.e._,<(_u2_>) as an inviscid invariant of the motion, among all
a=1-nl4= (3.12 theinfinite number of possible invariants associated with the
1 u=3. vorticity. If one invokes the Gaussian approximatian?®")
_ - _ =(w?)" for any integem, the conservation dfw?) is indeed
To derive a critical relation analogous to the one for thegficient for anyC” functional F(w) to be conserved. An-
susceptibility, we invoke the arguments of Bouchaud andyiher particularity of the KB theory is that the vorticity cor-
Georged 18] in their statistical interpretation of the general rg|ations decay logarithmically for distances larger than the
relations between critical exponents. If the afeaf the ob-  gjissipation scale and shorter than the integral scale. The
servation window exceed$, one can replace the integration slope of the KB energy spectrum-@) indeed corresponds
domain of Eq.(3.9) by I%; multiplying the factorA by I?/I%, {4 3 transition value, where the correlation function no longer

one gets decays algebraically at an infinite Reynolds number.
) Flows with the same inertial range spectrum may have
Q2 =(ANHYAQY2~ (AN2)Y(12)e, A2, distinct scaling functions, depending on their large-scale

(3.13 configuration; the nonuniversality of correlations can already
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be noticed by looking at the prefactor of a first order expan-isfied by other global quantities in turbulent flows, such as
sion inr/&. However, these functions commonly decay ex-the power consumption studied experimentally in Refs.
ponentially at distances much larger than the correlatioi2,28]. The present analysis is consistent with some of the
length. On the basis of experimental resuBd, we argue results presented in these two references: in a closed flow
that pair correlations between large-scale coherent vorticesonfined to a size of order of one energy injection scale, the
may be liquidlike. power consumption fluctuates strongly. In turn, in an open
Most of the statistical remarks made above are not qualiflow, many large eddies can develop and the fluctuations are
tatively modified in three dimensions. It can be shown thatGaussian, according to the central limit theorem.
for a Kolmogorov—5/3 law, the vorticity correlations decay

algebraically and sati_sfy relatiof8.1) with »=4/3 [27]_. In _ ACKNOWLEDGMENTS
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