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Critical behavior of vorticity in two-dimensional turbulence

Denis Boyer
Departamento de Fı´sica, Facultad de Ciencias Fı´sicas y Matema´ticas, Universidad de Chile, Casilla 487-3, Santiago, Chile

~Received 4 May 1999!

We point out some similarities between the statistics of high Reynolds number turbulence and critical
phenomena. An analogy is developed for two-dimensional decaying flows, in particular by studying the scaling
properties of the two-point vorticity correlation function within a simple phenomenological framework. The
inverse of the Reynolds number is the analog of the small parameter that separates the system from criticality.
It is possible to introduce a set of three critical exponents; for the correlation length, the autocorrelation
function, and the so-called susceptibility, respectively. The exponents corresponding to the well-known enstro-
phy cascade theory of Kraichnan and Batchelor are, remarkably, the same as the Gaussian approximation
exponents for spin models. The limitations of the analogy, in particular the lack of universal scaling functions,
are also discussed.@S1063-651X~99!12312-2#

PACS number~s!: 47.27.Jv, 05.40.2a, 05.70.Jk
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I. INTRODUCTION

Turbulence is characterized in a generic way by s
similar spectra, a feature that is also found in other phys
situations, such as critical phenomena or random walks
real space, this property is usually the signature of w
known statistical mechanisms such as the inverse power
decay of two-point correlation functions and the no
Gaussian behavior of the relative dispersion of random v
ables of the problem. Some attempts have been made t
late scaling in turbulence with critical phenomena and fi
theories@1#. More recently, experiments have shown that
power consumption in closed turbulent flows and the to
magnetization of spin systems at criticality have similar, a
to some extent, universal, probability distribution functio
@2#. The two-point velocity correlation function has been
quantity extensively studied in hydrodynamic turbulen
mostly under the related form of velocity increments@3#. In
practice, a real space experimental and numerical analys
eventual scaling laws is a difficult, space and time consu
ing task, because the asymptotic regimes are reached
slowly as the Reynolds number goes to infinity. On the ot
hand, relatively few studies have been devoted to the c
acterization of the spatial structure of the vorticity (v5“

3u). Although, in Fourier space, the enstrophy spectrum
an incompressible flow is very simply related to the kine
energy spectrum, the vortex statistics and correlations in
space are not so simply related to their velocity counterpa
but have distinct properties. This difference is illustrated i
spectacular way in two-dimensional turbulence, where
enstrophy^v2(x)& cascades toward small scales while t
kinetic energy^u2(x)& follows an inverse cascade to larg
scales. This is essentially due to the absence of vo
stretching in two dimensions. Because of this property,
enstrophy obeys a conservation equation, and^v2(x)& is dis-
sipated even in the very low viscosity limit, contrary to th
energy@3,4#.

A vortex is one of the simplest kinds of structure gen
ated by hydrodynamic instabilities; an isolated structure
likely to produce slowly decaying flow fields in space~typi-
cally with 1/r , 1/r 2 dependence! and consequently long
PRE 601063-651X/99/60~6!/6769~7!/$15.00
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range velocity correlations. Physically, a flow can be str
tured even if the vorticity vanishes nearly everywhere, as
the case of an assembly of point vortices in two dimensio
Hence, the study of vorticity distribution functions shou
reveal a deeper, less intuitive degree of order in flows. T
occurs in two-dimensional turbulence, where the vortic
tends to concentrate in spatially extended structures, of
ticlelike character. Indeed, numerical studies of tw
dimensional decaying turbulence have shown that the l
time dynamics is dominated by a few large coherent axisy
metric vortices that contain most of the enstrophy@5#. Dy-
namically, it is commonly believed that these structures
the result of many vortex mergers. Such flows can often
well described by a modified Hamiltonian, determinis
model of point vortices@6#. These rather well isolated struc
tures of well defined shape and size have the advantag
simplifying the picture of the flow, because the organizati
of initially numerous incoherent vortices into blobs reduc
the number of relevant degrees of freedom.

In this study, following a route similar to the analysis b
Babianoet al. @7# of velocity structure functions, we charac
terize the vorticity structure in real space for tw
dimensional homogeneous unforced turbulence, keepin
mind its possible representation in terms of assemblies
vortices. We consider the normalized vorticity autocorre
tion function, and calculate it assuming a phenomenolog
self-similar energy spectrum in the inertial range,E(q)
;q2m. In experiments or numerical studies,m is usually
found to be around 3@8#, the value predicted by the Kraich
nan @9# and Batchelor@10# reference theory, hereafter re
ferred to as KB, or steeper (m.4).

In the next section, we show that the vorticity autocor
lation function exhibits distinct behaviors depending on t
value of the exponentm. In Sec. III, we show that it is
possible to draw an analogy between two-dimensional tur
lence and systems of spins near criticality for values ofm
larger than 1. The correlations can indeed be written un
the form of a scaling law involving a diverging correlatio
length when the Reynolds number goes to infinity. The cr
cal exponents that correspond to KB theory precisely co
cide with the Gaussian exponents of spin models or rand
6769 © 1999 The American Physical Society
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6770 PRE 60DENIS BOYER
walks. Conclusions including a brief discussion of the thr
dimensional case are presented in Sec. IV.

II. VORTICITY POWER SPECTRA

Let us consider the vorticity autocorrelation function

Rv~r !5
^v~x!•v~x1r !&

^v2~x!&
, ~2.1!

that has been normalized to one atr50. Rv can be expresse
as a function of the Fourier transform of the vorticity

v~q!5E dxv~x!e2 iq•x, ~2.2!

through the relation

Rv~r !5

E dq^v~q!•v~2q!&eiq•r

E dq^v~q!•v~2q!&

. ~2.3!

The vorticity power spectrum̂v(q)•v(2q)& can easily be
related to the kinetic energy spectrumE(q) of the flowu. In
two dimensions one gets, in the homogeneous isotropic

E~q!5
q

4pV
^u~q!•u~2q!&, ~2.4!

whereV is the volume of the flow. If the flow is incompress
ible, one has the identitŷ v(q)•v(2q)&5q2^u(q)•u
(2q)&, so that

^v~q!•v~2q!&54pVqE~q!. ~2.5!

Replacing the identity~2.5! in expression~2.3! and integrat-
ing over the angular variable gives

Rv~r !5

E dqq2E~q!J0~qr !

E dqq2E~q!

, ~2.6!

whereJ0 is the Bessel function of the first kind. In the fo
lowing, one assumes that the energy spectrum is self sim
in the inertial range, which extends between an integral s
l at which energy is~initially ! injected and an enstroph
dissipation scalea:

E~q!;q2m, 2p/ l ,q,2p/a. ~2.7!

The spectrum is supposed to vanish at length scales sm
thana. If the observation scaler is much smaller thanl, one
can assume in addition thatE(q)50 for q,2p/ l . ~We dis-
cuss in Sec. IV the modifications introduced by consider
the part of the spectrum that extends beyond the ine
range.! Note that in the general case, the scalel, and hence
the integral Reynolds number, may increase with time, a
freely decaying processes@4#. This is not a restriction to ou
analysis, which deals with instantaneous spectra. Rela
~2.6! simply turns into
-

se

ar
le

ller

g
al

in

n

Rv~r !5S E
ql

qa
dqq2(m22)J0~qr ! D S E

ql

qa
dqq2(m22)D 21

,

~2.8!

where

ql52p/ l ,

qa52p/a. ~2.9!

Note that the normalized velocity autocorrelation functi
Ru(r ), has the same expression as Eq.~2.8!, replacingm by
(m12). It can be seen that both the numerator and the
nominator of Eq.~2.8! diverges whenl→` if m>3. Hence,
we expect the behavior ofRv(r ) for m.3 to differ from its
behavior form,3, while the analytical form ofRu does not
undergo an abrupt change at this point. In the following
discuss the different cases encountered.

A. Caseµ>3

To study the correlations in the intervalr @a, we can
replace the upper limits of the integrals of Eq.~2.8! by in-
finity. Thus,Rv(r ) scales as a function ofr / l only, and can
be rewritten as

Rv~r !512~m23!ql
m23E

ql

`

dqq2(m22)@12J0~qr !#,

a!r . ~2.10!

If 3 ,m,5, the integral of Eq.~2.10! is finite asql goes to
zero. After the variable changex5qr, one obtains the first
order expansion inr / l ,

Rv.12
G@~52m!/2#

G@~m21!/2# S pr

l D m23

, a!r ! l ;3,m,5,

~2.11!

whereG denotes the Gamma function. If 5,m,7, we use
the second order expansion of the Bessel functionJ0(x)51
2x2/41O(x4), and replace in Eq.~2.10! @12J0(x)# by @1
2x2/42J0(x)#1x2/4. We obtain

Rv~r !.12
m23

4~m25!
~qlr !22Cm~qlr !m23, 5,m,7,

~2.12!

with

Cm5~m23!E
0

`

dxx2(m22)@12x2/42J0~x!#. ~2.13!

The leading behavior ofRv(r ) is given by ther 2 term. It is
easy to show that this property stays valid for allm.5:

Rv~r !.12
m23

4~m25!
~qlr !2, a!r ! l . ~2.14!

The results displayed in Eqs.~2.11! and ~2.14! are the ana-
logues of those obtained by Babianoet al. @7# for the veloc-
ity structure functions~in the cases 1,m,3 andm.3, re-
spectively!. The power-law exponent of the corrections f
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small separation distances does not depend onm for m.5.
The first order expansions~2.11! and ~2.14! show that the
characteristic length ruling the decay ofRv is ql

21 . We con-
clude that the vorticity correlation length is of order of th
integral scalel.

B. Case 3/2<µ<3

For energy spectra less steep than23, the denominator of
expression~2.8! is well defined asl goes to infinity, but
diverges whena goes to zero. In turn, if 3/2,m,3, the
numerator of Eq.~2.8! does not necessitate infrared nor u
traviolet cutoffs to be finite, provided thatr .0. This implies
that in the limit wherel /a is large, Rv(r ) can be much
smaller than one even ifr ! l .

If a!r ! l , one can setql50 andqa5` in the numerator
of Eq. ~2.8!. Using properties of Bessel functions@11#, one
obtains

Rv~r !.
G@~52m!/2#

G@~m21!/2# S pr

a D 2(32m)

. ~2.15!

The correlation function decays algebraically with the d
tancer. The valuem53 separates two different scaling r
gimes ofRv . At the transition, the numerator of Eq.~2.8!
behaves as ln(l/a), and making the variable changex5qa,
one obtains after a simple calculation:

Rv~r !512
1

ln~ l /a!
E

0

2p

dxx21F12J0S x
r

aD G , m53.

~2.16!

When the separation distance is much larger than the d
pation scale, the correlations decay logarithmically

Rv~r !.
ln~ l /r !2 ln p20.577

ln~ l /a!
, a!r ! l ;m53.

~2.17!

C. Caseµ<3/2

For values ofm lower than 3/2, both the denominator an
the numerator of Eq.~2.8! diverge whena goes to zero. In
order to avoid convergence problems due to oscillati
when integrating the Bessel functionJ0 over a large but fi-
nite interval, it is now necessary to replace the discontinu
energy spectrum~2.7! by a continuous spectrum that mode
better the effects of viscous dissipation@12#, for instance,

E~q!;H q2me2q2/qa
2

if q.ql ,

0 if q,ql .
~2.18!

In Eq. ~2.18!, the dissipative spectrum at large wave numb
q.qa is described by a Gaussian function@13#. Settingql
50, relation~2.6! yields

Rv~r !5
2

G@~32m!/2#
qa

2(32m)E
0

`

dqe2q2/qa
2
q22mJ0~qr !,

~2.19!

that can be recast as
-

si-

s

s

s

Rv~r !51F1S 32m

2
,1;2

qa
2r 2

4 D , ~2.20!

where 1F1 is a hypergeometric function. Forqar @1, and if
mÞ1, Rv behaves as@11#

Rv~r !.
1

G@~m21!/2# S pr

a D 2(32m)

. ~2.21!

If m.1, the above expression is positive and does not di
from the behavior displayed by Eq.~2.15!. In turn, if m
51, the prefactor of the algebraic dependence in Eq.~2.21!
vanishes and relation~2.20! simply reduces to a short rang
function

Rv~r !5e2(pr /a)2
. ~2.22!

The energy spectrumm51 is known to correspond to a flow
composed by statistically independent point vortices@14#. In
that limit, it is easy to show that the vorticity correlation
reduce to

Rv~r !um515H 1 if r 50,

0 if r .0.
~2.23!

Replacinga by zero in Eq.~2.22!, we recover the distribution
given by Eq.~2.23!.

If m,1, vortex correlations for large separation distanc
r are still given by relation~2.21!. However, the prefactor
G@(m21)/2#21 is nownegative. This case is physically very
different from the situationm.1, whereRv(r ) is always a
positive, slowly decaying function. Indeed, form,1, Rv(r )
decreases for smallr and has its first zero forr;a: this is the
signature of a short range function, such as Eq.~2.22!. We
conclude thatRv is short range and characterized by a c
relation length of ordera in the rangem<1.

III. DISCUSSION

The results derived in the preceding section show that
two-point vorticity autocorrelation function can be recast u
der scaling forms, such as

Rv~r !5S r

aD 2h

f ~r /j!. ~3.1!

The above relation defines an exponenth and a correlation
length j. Pair correlations in systems near a critical po
satisfy similar scaling laws, where the scaling functionf de-
cays, say, exponentially, andj diverges as the temperatur
approaches the critical temperature. In the present con
the vorticity has various spatial structures depending on
slope of the energy spectrum. The correlation lengthj is
small and equals the dissipation lengtha whenm,1, see Eq.
~2.22!. The casem.1 is more interesting because, then, t
correlation length is large:j5 l @a, see Eqs.~2.11! and
~2.14!. @In the range 1,m,3, if the separation distancer is
no longer small compared withl, it is easy to check tha
expression~2.15! or ~2.21! reduces to the form~3.1! with j
5 l .# These two distinct regimes are indeed driven by
behavior of the numerator of Eq.~2.8! with respect to the
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6772 PRE 60DENIS BOYER
ultraviolet cutoff. When this cutoff is necessary in order
get a finite integral, the correlations are short range; oth
wise, they are long range. This abrupt change is reminis
of a similar feature encountered in problems of elastic in
faces at thermal equilibrium, namely, the transition from fl
to rough surfaces as the surface dimension decreases a
the valued52 @15#. In that problem, the rms of the heigh
difference between two well-separated points can be see
a correlation length. In high dimensions~analogous here to
low values ofm), this difference is constant, of order of
small cutoff scale identified with the thickness of the inte
face ~here, the dissipation scale!. However, if d,2, the
height difference is ‘‘macroscopic:’’ it depends on the size
the system, i.e., the separation distance between the
points.

The main scaling properties are summarized on the
gram of Fig. 1. Flows with short range correlations can
pictured for instance as a gas, or liquid, of nearly pointl
vortices, with radii of order of the smallest characteris
scale, the dissipation scalea. Using the language of spin
models, these structures are also analogous to high tem
ture states, wherea would correspond to the lattice spacin
The part of the diagram wherem is larger than 1 correspond
to vorticity distributions with long range spatial correlation
In the following, we focus on this region and develop
analogy with critical phenomena.

A. Critical exponents

An analogy between a physical problem and critical p
nomena requires that some of its statistical properties ta

FIG. 1. Scaling forms of the vorticity autocorrelation function
the space of the parameterm. If the slope of the energy spectrum
lower than 1,Rv is a short range function. In turn, whenm.1, the
correlation length is of order of the integral scalel. Note that for
m.3, the critical exponenth is identically zero.
r-
nt
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simple scaling form described with a few relevant parame
in a particular asymptotic limit@16#. This can be done, for
instance, in the context of random walks, where the ana
of the spin-spin correlation is the probability of presence~or
the end-to-end distance distribution!, and the analogue of the
temperature difference from the critical temperature is
inverse of the time~or length of the walk! @17,18#.

In turbulence, the integral Reynolds number of a flow
defined as Re5v l /n0, wherev is the rms of the velocity and
n0 the kinematic viscosity. The ratio (l /a)d, whered is the
space dimension, is often seen as the number of degree
freedom of the flow@4#. Phenomenological theories involv
ing dimensional arguments@9,10# usually lead to power law
behaviors ofl /a with Re, say

l;a Ren. ~3.2!

Sincel is the correlation length in the regionm.1 ~see Fig.
1!, n can be understood as a correlation critical expone
Indeed, as the Reynolds number goes to infinity, the corr
tion lengthj5 l diverges in units ofa, and the small param
eter that separates the system from criticality is the invers
the Reynolds number.

The correlation function exponenth of the scaling form
~3.1! defines a second critical exponent.h532m in the
range 1,m,3, and h50 for m.3. The transition (m
53) where correlations no longer decay algebraically at
finite Reynolds number coincides with the spectrum of
KB theory. At this particular point,Rv decays logarithmi-
cally as shown by Eq.~2.17!. Table I shows the main con
nections with critical phenomena, for instance, with a syst
of Ising’s spins at temperature slightly aboveTc . However,
the correspondences are purely statistical: considering
body problems, it is obvious that vortex interaction and d
namics@19# cannot be compared with spin interaction. Co
cerning this last point, the comparison with spin systems
much more precise in the case of a superfluid@20#.

Different theories of turbulence will in general lead
different values of the exponentsn and h. In phenomeno-
logical theories, conservation laws and other argume
~such as dimensional arguments! determine the exponent o
the energy spectrum, as well as prefactors depending on
sipation rates. Since the size of the inertial range must
consistent with the dissipation rates, once the shape of
spectrum is known and the energy injection scale is fixed,
dissipation scalea @and consequently the value of the exp
nentn in relation ~3.2!# is unique. Hence, the critical expo
nentsh andn are generally not independent.
TABLE I. Two-dimensional turbulence and critical phenomena compared.

2D turbulence Critical phenomena

Rv(r )5^v(x)•v(x1r )&/^v2(x)& Spin correlationŝS(x)S(x1r )&
1/Re(→0) t5uT2Tcu/Tc (→0)
Rv(r );(r /a)2h f (r / l ) ^S(x)S(x1r )&;r 22d2h f (r /j)
Dissipation scalea Lattice spacinga
Integral length:l;a(1/Re)2n Correlation lengthj;t2n

x[A21^„*Adxv(x)…2&/^v2&;a2(1/Re)2g Susceptibility:x}^(( iSi)
2&;t2g

Exponents relation:g5n(22h) g5n(22h)
Kraichnan and Batchelor theories:h50, n51/2 Gaussian result:h50, n51/2
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The KB approach to two-dimensional turbulence assum
that the enstrophy flux through wave numberq is indepen-
dent ofq at largeq; a dimensional argument leads tom53
and (l /a)2;Re @4#. The critical exponents associated to t
KB theory are henceh50 andn51/2. These exponents ar
remarkably, the same as the exponents of the Gaussian
proximation in spin models, or the Brownian motion exp
nents~see Ref.@18#!. Although the meaning of this coinci
dence remains unclear, first, it can be noted that a mean
approximation in the present fluid dynamics context cor
sponds to the fact of neglecting the fluctuations of the ens
phy dissipation rate during the enstrophy cascade. Secon
the KB theory is based on two conservation equations:
the kinetic energŷ u2& and for the enstrophŷv2&. Such a
description is incomplete: indeed, in two dimensions the v
ticity follows the fluid motion in the inviscid limit, hence an
continuous functional̂F(v)& is invariant with time, or must
satisfy a conservation equation in the slightly dissipat
case. Assuming the Gaussian approximation,^v2n11&50
and ^v2n&5^v2&n for any integern, the conservation of
^v2& implies the conservation of any functionalF(v)
5(nanvn. Hence, the KB theory ressembles a Gaussian
proximation, by focusing only on the second moment of
vorticity.

B. Lack of universality

Although microscopic details~here the dissipation pro
cesses atq.qa) disappear in the behavior ofRv(r ) for large
separation distances, the analogy with critical phenom
presented in this section encounters a limitation when lo
ing more closely at the scaling functionf in Eq. ~3.1!. In the
case of turbulence,f does not rigorously converge in distin
‘‘universality classes,’’ since it does not depend on the s
similar energy spectrum of the inertial range only. The sc
ing functionf essentially depends on the shape of the ene
spectrum at low wave numbers. In general, the integral s
is not the largest scale in turbulent flows and coherent st
tures may emerge from external constraints: the wave n
bers lower than 2p/ l contain a non-negligible part of th
energy and this part of the spectrum is driven by ‘‘nonu
versal’’ conditions such as interactions between large edd
depending on the system size and boundary conditio
Hence, only short distance scaling is generic in turbulen
as already noted by Eyinket al. @1#.

Let us consider the modified spectrum

E~q!;H ql
2(m01m)qm0, 0,q,ql ,

q2m, ql,q,qa .
~3.3!

In two dimensions, the exponentm051 corresponds to an
equipartition kinetic energy spectrum at low wave numbe
the valuem053 has also been proposed for decaying tur
lence@21#. It can be easily shown that in the ranger ! l , Eqs.
~2.15! and~2.20! remain unchanged with the spectrum giv
by Eq. ~3.3!. However, if one wishes to compute the scali
function, in the casem.3 for instance, Eq.~2.10! turns into

Rv~r !5 f S r

l D512S 1

m013
1

1

m23D 21

ql
m23

3E
ql

`

dqq2(m22)@12J0~qr !#, ~3.4!
s
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;
-

r ! l ;m.3.

Hence, the differences introduced by the modified spectr
in the scaling functionf (u), defined by Eq.~3.1!, already
appear at the first order expansion inu: the prefactor is also
a function of m0. As u grows, the decay off (u) depends
more strongly on the ‘‘nonuniversal’’ part.

However, withE(q) given by Eq.~3.3!, the leading be-
havior of f (u) for u@1 is generically exponential. A famou
example is provided by the Ornstein-Zernike~OZ! approxi-
mation for critical phenomena, where the spin-spin corre
tion function readŝ S(0)S(r )&}*d2k exp(ik.r )/(k21j22)
;r 21/2exp(2r/j) for r @j @22#, corresponding in the presen
description tom0521 andm53. Recent experimental re
sults on two-dimensional decaying turbulence in soap fil
have shown clear evidence of spectra with both power-
and inverse power-law regimes, with respective slopes c
to the valuesm051.5 andm53 @8#. Analytical calculations
can be performed in the equipartition casem051 and m
53: let us rewrite the energy spectrum under the fo
E(q);q/(q41j24) with j5 l . The vorticity correlations
read

Rv~r !}E
0

`

dqq3
J0~qr !

q41j24
. ~3.5!

Differing from the OZ result, the asymptotic limit of Eq
~3.5! exhibits oscillations@23#:

f ~u!}
1

u1/2
exp~2u/A2!cos~u/A21p/8!, u@1.

~3.6!

We now outline a physical interpretation of the scali
function f. As mentioned before, some two-dimensional d
caying turbulent flows with a spectrum given by Eq.~3.3! are
well pictured by an assembly of well separated vortex blo
with particlelike character. This has been, for instance, v
clearly observed in some recent numerical simulations
homogeneous Rossby wave turbulence@24#. Let us assume
that these vortices are all of sizej and with the same circu
lation modulus. The vorticity distribution inside one blob
thus described by the short distance behavior of the vorti
correlation function, see, e.g., Eq.~2.17!. In turn, the long
distance behavior ofRv accounts for the weak correlation
between different vortices. Following a route similar to t
one presented in Ref.@25#, it is easy to show from the defi
nition ~2.1! that, if there are the same number of blobs w
positive and negative circulation so that the flow has no
overall rotation

Rv~r !}
1

2
@gl~r !2gu~r !#, r .j. ~3.7!

Using the notations employed for ionic liquids,gl represents
the pair correlation function between two vortices of sa
circulation~‘‘like’’ !, andgu the pair correlation function be
tween two vortices with opposite circulation~‘‘unlike’’ !. The
oscillating decaying shape of particle pair correlation fun
tions is a generic feature of liquids, in particular, those t
are ionic@26#. The oscillations ofRv obtained in a particular
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case through Eq.~3.6!, although having a very differen
physical origin, qualitatively support the idea that the stru
ture of homogeneous assemblies of coherent vortices ca
liquidlike.

C. Susceptibility

Since the autocorrelation functionRv is an averaged
quantity, it cannot of course provide by itself all the deta
on the complexity of vortex structures observed in turb
lence, and contained in higher moments. Yet, large cohe
vortices can be seen as a particular manifestation of l
range order up to the integral scale, similarly to magneti
tion domains in systems of spins near a critical point. Th
vortices produce large fluctuations of vorticity on sca
smaller than the integral scale, and possibly spatial interm
tency. The fluctuations of the total vorticity contained insi
an observation window of areaA are non-Gaussian~for m
.1) whenA is lower than the square of the integral sca
To see this, let us define the circulation

VA5
1

^v2&1/2EA
dx•v~x!. ~3.8!

The standard deviationA^VA
2& of VA from its mean value

(^VA&50) can be estimated by consideringVA as a sum of
random correlated variables. According to the definitio
~2.1! and ~3.8!, one gets

A^VA
2&;S AE

A
drRv~r ! D 1/2

. ~3.9!

WhenRv is short range, one obtains the Gaussian beha

A^VA
2&;A1/2 m<1, ~3.10!

at any scale larger than the dissipation scale. In turn, w
the correlation length equals the integral scalel, the scaling
exponent is non-Gaussian~i.e., larger than 1/2) at scale
smaller thanl. With the help of Eqs.~3.1! and ~3.9!, we
indeed find

A^VA
2&;Aa ~A, l 2! ~3.11!

with

a512h/45H ~m11!/4, 1,m,3,

1, m.3.
~3.12!

To derive a critical relation analogous to the one for t
susceptibility, we invoke the arguments of Bouchaud a
Georges@18# in their statistical interpretation of the gener
relations between critical exponents. If the areaA of the ob-
servation window exceedsl 2, one can replace the integratio
domain of Eq.~3.9! by l 2; multiplying the factorA by l 2/ l 2,
one gets

A^VA
2&5~A/ l 2!1/2^V l 2

2 &1/2;~A/ l 2!1/2~ l 2!a, A@ l 2.
~3.13!
-
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d

Hence, the system can be pictured asA/ l 2 independent re-
gions of sizel at criticality. We define the susceptibility pe
unit area as

x5
^VA

2&
A

. ~3.14!

WhenA is larger than the integral scale squared,x becomes
independent ofA. Taking into account the dissipation scalea
in the calculations, we find from expression~3.13! combined
with Eqs.~3.2! and ~3.12!

x;a2~1/Re!2g, ~3.15!

with the exponentg satisfying the same relation as in critic
phenomena:

g5n~22h!. ~3.16!

Relation ~3.15! shows that the susceptibility diverges whe
compared with the ‘‘microscopic’’ susceptibilitya2. Note
that contrary to the lattice spacing in spin models, the dis
pation lengtha may not remain constant while other param
eters of the flow are varied. In any case, Re,^v2&, anda are
independent variables.

IV. CONCLUSION

We have studied the two-point vorticity correlation fun
tion in two-dimensional turbulent flows characterized by
self-similar energy spectrum within an inertial range limit
by two very different length scales. If the slope is steep
than 1, the vorticity distribution presents some similitud
with the magnetization in models of spins near critical poi

On the grounds of phenomenological theories of turb
lence, the analogy with critical phenomena is made poss
because the ratio between the integral scale~the macroscopic
scale at which energy is injected! and the dissipation scal
diverges as a power law of the Reynolds number in the la
Reynolds number limit. The divergence of susceptibility
associated here with the increasing fluctuations of the cir
lation taken around a large contour, as the Reynolds num
increases. As a surprising result, the~nonindependent! criti-
cal exponents corresponding to the Kraichnan@9# and Batch-
elor @10# ~KB! theory are the same as those of the Gauss
approximation result in spin models. A possible connect
between these two phenomena could be that the KB the
only considers the first nonvanishing moment of the vortic
~i.e., ^v2&) as an inviscid invariant of the motion, among a
the infinite number of possible invariants associated with
vorticity. If one invokes the Gaussian approximation^v2n&
5^v2&n for any integern, the conservation of̂v2& is indeed
sufficient for anyC` functionalF(v) to be conserved. An-
other particularity of the KB theory is that the vorticity co
relations decay logarithmically for distances larger than
dissipation scale and shorter than the integral scale.
slope of the KB energy spectrum (23) indeed correspond
to a transition value, where the correlation function no long
decays algebraically at an infinite Reynolds number.

Flows with the same inertial range spectrum may ha
distinct scaling functions, depending on their large-sc
configuration; the nonuniversality of correlations can alrea
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be noticed by looking at the prefactor of a first order exp
sion in r /j. However, these functions commonly decay e
ponentially at distances much larger than the correla
length. On the basis of experimental results@8#, we argue
that pair correlations between large-scale coherent vort
may be liquidlike.

Most of the statistical remarks made above are not qu
tatively modified in three dimensions. It can be shown t
for a Kolmogorov25/3 law, the vorticity correlations deca
algebraically and satisfy relation~3.1! with h54/3 @27#. In
the general case, at finite Reynolds numbers, the circula
modulus introduced in relation~3.8! is a sum of random
variables if the integrated area extends over many inte
scales, see Eq.~3.13!. However, it scales anomalously in th
inertial range, see Eq.~3.11!. This is probably a feature sa
re

-

ss

,

ide
-
-
n

es

li-
t

n

al

isfied by other global quantities in turbulent flows, such
the power consumption studied experimentally in Re
@2,28#. The present analysis is consistent with some of
results presented in these two references: in a closed
confined to a size of order of one energy injection scale,
power consumption fluctuates strongly. In turn, in an op
flow, many large eddies can develop and the fluctuations
Gaussian, according to the central limit theorem.
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